Stress-induced hematopoietic failure in the absence of immediate early response gene X-1 (IEX-1, IER3).
نویسندگان
چکیده
Expression of the immediate early response gene X-1 (IEX-1, IER3) is diminished significantly in hematopoietic stem cells in a subgroup of patients with early stage myelodysplastic syndromes, but it is not clear whether the deregulation contributes to the disease. The current study demonstrates increased apoptosis and a concomitant decrease in the number of hematopoietic stem cells lacking this early response gene. Null mutation of the gene also impeded platelet differentiation and shortened a lifespan of red blood cells. When bone marrow cells deficient in the gene were transplanted into wild-type mice, the deficient stem cells produced significantly fewer circulating platelets and red blood cells, despite their enhanced repopulation capability. Moreover, after exposure to a non-myeloablative dose of radiation, absence of the gene predisposed to thrombocytopenia, a significant decline in red blood cells, and dysplastic bone marrow morphology, typical characteristics of myelodysplastic syndromes. These findings highlight a previously unappreciated role for this early response gene in multiple differentiation steps within hematopoiesis, including thrombopoiesis, erythropoiesis and in the regulation of hematopoietic stem cell quiescence. The deficient mice offer a novel model for studying the initiation and progression of myelodysplastic syndromes as well as strategies to prevent this disorder.
منابع مشابه
Immediate early gene-X1 interferes with 26 S proteasome activity by attenuating expression of the 19 S proteasomal components S5a/Rpn10 and S1/Rpn2.
The stress response gene IEX-1 (immediate early gene-X-1) is involved in the regulation of cell growth and cellular viability. To some extent, these effects include an interference with the proteasomal turnover of certain regulatory proteins. Here, we show that IEX-1 directly attenuates the activity and formation of the 26 S proteasome in HEK-293 cells (human embryonic kidney cells). We further...
متن کاملDistinct domains for anti- and pro-apoptotic activities of IEX-1.
IEX-1 (immediate early response gene X-1) is a stress-inducible gene. Its overexpression can suppress or enhance apoptosis dependent on the nature of stress, yet the polypeptide does not possess any of the functional domains that are homologous to those present in well characterized effectors or inhibitors of apoptosis. This study using sequence-targeting mutagenesis reveals a transmembrane-lik...
متن کاملIdentification of IEX-1 as a biomechanically controlled nuclear factor-kappaB target gene that inhibits cardiomyocyte hypertrophy.
Biomechanical strain is a stimulus for cardiomyocyte hypertrophy and heart failure, but the underlying molecular mechanisms remain incompletely understood. Using an in vivo murine model of pressure overload and an in vitro model of mechanical stimulation of primary cardiomyocytes, we identified iex-1 as a gene activated during the early response of cardiomyocytes to hypertrophic stimuli and as ...
متن کاملThrombopoietin regulates IEX-1 gene expression through ERK-induced AML1 phosphorylation.
The extracellular signal-regulated kinases (ERKs) are required for thrombopoietin (TPO) functions on hematopoietic cells, but the ERKs targets involved remain unknown. Here we show that the regulation of the immediate early gene X-1 (IEX-1), identified as an ERK substrate in response to TPO, was mediated by an ERK-dependent phosphorylation of AML1. The addition of TPO to UT7-Mpl cells and prima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Haematologica
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2014